Al-driven prediction of protein-protein binding trends from atomistic simulation data

Sara Capponi

IBM Almaden Research Center NSF Center for Cellular Construction

Molecular Dynamics (MD)
Atomistic Simulations

simulate biological processes at atomic resolution (limitations in simulation length)

...unless you can access IBM supercomputers...

Molecular Dynamics (MD)
Atomistic Simulations
+

Finite Element Model

MD to extract mechanical properties
to describe the motion
of the ankyrin chains of
mechanotransduction channel

MD Finite Element Model

Argudo et al., J. Gen Phys. 2019

Molecular Dynamics (MD)
Atomistic Simulations
+

Artificial Intelligence

MD to extract dynamical information to feed AI algorithms and make predictions

AI

Agent Based Model (ABM)

to study **viral infection** in presence of DIPs and IFN

agents = viral particles cells = lattice squares

DARPA grant @ IBM, S Bianco

to probe **mask effectiveness** for reducing COVID-19 transmission

IBM COVID-19 Task Force, S Bianco

agents = individuals

Catching et al. Sci Rep, 2021

Al-driven prediction of protein-protein binding trends from atomistic simulation data

Motivations

Why do we care about binding affinity?

cell binding -> protein-protein binding

cells

Dan Fletcher, Nature Rev 2020

Motivations

Can we efficiently measure and predict binding affinity?

Experiments and biased atomistic simulations are expensive (money and time)

Build a **CNN framework** to:

- predict efficiently protein-protein binding affinity trend from unbiased atomistic simulation data
- shortening the length of unbiased atomistic simulation data used for binding affinity estimation

Spike protein S test case:

S responsible for binding & membrane fusion

SARS-CoV-2 cell entry mechanism: ACE2-RBD complex

Reference data

RBD-ACE2 $\Delta \log_{10} (K_{D,app}) = 0$ (reference)

Mutation	Origin	$\Delta \log_{10}(\mathbf{K}_{D,app})$	
N501Y	English variant	0.24	
Q498Y	SARS-CoV	0.16	
N501V	-	0.15	
Q493Y	Bat RaTG13	0.12	
N501T	SARS-CoV	0.1	
E484K	Brazilian variant	0.06	
N501S	-	-0.13	
Q493N	SARS-CoV	-0.21	
Q498N	-	-0.5	
Q498K	-	-2.26	
N501D	Bat RaTG13	-2.42	
G502P	Ξ	-4.55	

simulation	lenght (ns)
cRBD-ACE2	270
N501Y-ACE2	187
Q498Y-ACE2	206.84
N501V-ACE2	204.86
Q493Y-ACE2	197.28
N501T-ACE2	186.58
E484K-ACE2	204.56
N501S-ACE2	205.2
Q493N-ACE2	197.18
Q498N-ACE2	198.84
Q498K-ACE2	204.46
N501D-ACE2	210.44
G502P-ACE2	160.58

T Starr et al, Cell 2020

Hydrophobic RBD mutations

Mutation	Origin	$\Delta \log_{10}(K_{D,app})$	Length (ns)
V503I	SARS-CoV	0.05	187.8
L492I	() 	0.03	261.24
L455I	<u> </u>	-0.01	272.24
V503A	-	-0.06	188.18
A475V	SARS-CoV	-0.14	226.6
L455A	_	-0.43	280.72
L455V	-	-0.73	280.98
A475L	_	-1.27	279.28
A475P	SARS-CoV	-1.62	281.02

160 ns → ~ 5 days IBM supercomputer ~ 23 days lab server

... if not in parallel

→ 5 days x 22 simulations ~ 4 months

training set preparation

Conversion of MD data to inputs for machine learning algorithm

contact area

calculation all distances
between all Ca atoms
belonging to the contact area
(62 ACE x 55 RBD contact matrix)

training set preparation

Data processing

Convolutional Neural Network Framework

ensemble prediction strategy (10 NNs)

S. Wang et al, Nat Comm (2019)

Training and Validation Data Set

prediction on whole simulation length (160 ns)

Mutation	Origin	$\Delta \log_{10}(\mathbf{K}_{D,app})$
N501Y	English variant	0.24
Q498Y	SARS-CoV	0.16
N501V	-	0.15
Q493Y	Bat RaTG13	0.12
N501T	SARS-CoV	0.1
E484K	Brazilian variant	0.06
N501S	<u> </u>	-0.13
Q493N	SARS-CoV	-0.21
Q498N	2	-0.5
Q498K	=	-2.26
N501D	Bat RaTG13	-2.42
G502P	-	-4.55

- 100 % NN ensemble accuracy
- 96.67 % averaged accuracy on single NN of the ensemble

CNN ensemble predicts

accurately
binding affinity trend

Predictions on shorter simulated time prediction on increasing time window (20ns to 160ns, step 20ns)

100 % NN ensemble accuracy using 40ns unbiased simulation data

CNN ensemble predicts

accurately
binding affinity trend using
unbiased short
atomistic data (40 ns)

Conclusions

- Ensemble of CNNs trained on distance matrices predicts with <u>high</u> accuracy the binding affinity trend
- We proved our AI method predicts binding affinity trends using <u>short</u>, unbiased atomistic simulations

(40ns vs 160ns simulations → 1 day vs 5 days on a HPC cluster)

Contribution to CCC: MD-AI

IBM supercomputers

Cell-cell interactions

SynNotchSpecific activation of CAR-T

Understanding and programming self-organizing multicellular structures with synthetic cell-cell signaling

TCR α-chain

Immune system Al-aided

engineering

TCR β-chain

Acknowledgements

IBM Cellular Engineering Group

Simone Bianco

Shangying Wang

Tom Zimmerman

Open positions:

- IBM summer internship
- MD-AI postdoc

sara.capponi@ibm.com or CCC slack

This material is based upon work supported by the NSF under Grant No. **DBI-1548297**.